Music Recommendation System

Using Implicit Feedback

Presented by Gaayathri Vaidhyanathan
Under the Guidance of Dr. Yingshu Li
Department of Computer Science

Georgia State University

OVERVIEW

BACKGROUND
PROBLEM FORMULATION
OBJECTIVE
METHODOLOGY OVERVIEW 4
MODELING e = fdjé + in®Y Lxg |
IMPLEMENTATION DEMO) o 9.

SIMULATION ' '
OBSERVATIONS AND RESULTS
REFLECTIONS

BACKGROUND

* Recommendation Engines try to predict the
preferences of the clients and provide items
that are likely to be appealing to them.

* A recommendation system can be built using
a variety of methods, such as a popularity-
based recommendation, a collaborative
filtering approach (based on users and
based on items), a content-based filtering
approach, and a hybrid approach.

BACKGROUND

The efficiency of the model can
be evaluated based on the
explicit feedback from the user
ratings such as Mean Average
Precision (MAP@K) and Mean
Average Recall (MAR@K) and
the recommendations keep

improving based on the ratings (16
received by the user.

Recommended to user

Similar
: product

PROBLEM FORMULATION

THE SPARSITY OF DATA AVAILABLE TO THE COMPUTATIONAL POWER OR THE EVALUATION METRICS: NOT FEASIBLE
PRODUCE RECOMMENDATIONS: NOT ALL ITERATIONS IT TAKES TO PRODUCE A TO ACCUMULATE USERS FOR SURVEY/BETA
USERS/CUSTOMERS LISTEN TO ALL SONGS. RECOMMENDATION IS EXTENSIVE: NUMBER TESTING.

OF ITERATIONS = 3ALL_SONGS *
SUSER_LISTENED_SONGS

OBJECTIVE

® Design a model to
overcome sparsity in data
when constructing
similarity matrix.

® Decrease computational
intensity/number of
iterations

e Come up with an
implicit feedback
approach to evaluate the

model based on data
in hand.

METHODOLOGY OVERVIEW

Data Source - The dataset used for this project is the Million Song Dataset (MSD). Here, the core data focus is the
Taste Profile Subset data provided by The Echo Nest.

Exploratory Data Analysis - A detailed analysis of the data is performed to have a better understanding of the data.
Data is plotted to check for normal distribution and skewness/bias of data along with a probability plot to determine
the measure of kurtosis.

Modeling - The algorithms developed are a popularity-based model, a similarity-based model constructing a
cooccurrence matrix, matrix factorization-based approach using singular value decomposition.

Evaluation - Implicit feedback mechanism is designed and the measure used to compare these models is the
cumulative probability of users listening to the recommendation provided.

BASELINE MODELS

Two baseline models are used to compare our
proposed model:

Popularity-based Recommendation: Returns and
introduces user to trendy music but lacks
customization

Traditional Collaborative Filtering i.e., Similarity-
based Recommendation: Customizes the
recommendation as per user's taste but is time-
consuming

POPULARITY-BASED ENGINE

Algorithm Flow of Algorithm

INPUT — Dataset

COUNT THE
OUTPUT - Top 10 recommended songs 5| GROUPBYTHE NUMBER OF USERS
LA SONG COLUMN LISTENING TO

1: Load Dataset | SONGS
2: Group by ‘song’ column
3: For each ‘song’: SORT BASED ON

COUNT OF EACH
4: Store count under each group as song_popularity SONG

5: End For each

6: Sort based on song_popularity | e REVERSE THE
7: Reverse the sorted data END [E— SONGS AS «—— SORT ORDERTO
" RECOMMENDATION DESCENDING

8: Return Top 10 song details from data

POPULARITY-BASED ENGINE

COde Snlppet # creating recommendation model based on popularity

def create_pre(main_df, user_id, song):
song_popularity = main_df.groupby(['song'])['user_id'].count().reset_index()
song_popularity.rename(columns = {'user_id': 'score'},inplace=True)
sorting it based on the popularity to provide top n recommendations based on popularity
song_popularity_sorted = song_popularity.sort_values(['score', 'song'], ascending = [0,1])
adding rank into the sorted dataframe for better identification of top n recommendations
song_popularity_sorted['rank'] = song_popularity_sorted['score'].rank(ascending=0, method='first')
1f you want top n recommendations based on popularity. The value of n can be given as required by the user.
recommendation_pre = song_popularity_sorted.head(10) # the number within head() can be changed based on the n value
del recommendation_pre['score']
return recommendation_pre

START

l

Give the user_id that
requires
recommendation

Get list of all unique

Get all unique songs

——{songs listened by the ——»f present in the

user

dataframe
[

Get list of all users
who listened to it

|

For each song in the
user_listened_song

v

Get list of users who
listened to that song

Create a cooccurrence
matrix of dimensions
len(user_listened_songs)
len(all_songs) and initiaize
itto 0

|

For each song
present in dataframe

Find count of
common users —»
between the two

Place this value at
comresponding index
in the matrix

T

Calculate
(common_user)/ien(total_user)

Construction of
Cooccurrence Matrix

i

Calculate sum of
column values in the
matrix row-wise which
is the similarity-score

Convert this row-wise
similarity score to list

|

Sort this similarity
score of song in
descending order

l

Return song details of
top n similarity scores

Generate

|

Display top n
recommendation

|

End

Recommendation

SIMILARITY-BASED

ENGINE

SIMILARITY-BASED ENGINE

Whiteboard Explanation

PROPOSED MODEL

Matrix Factorization using Singular Value
Decomposition:

Matrix factorization decomposes matrix into
constituents which when multiplied returns
original matrix.

Can be used to find Latent Factors between two
entities.

So, what are latent factors?

PROPOSED MODEL

Goal is to construct two matrices X and Y such
that their product (matrix multiplication)
roughly approximates R, assuming that the
procedure assists in the identification of latent
factors/features, denoted as K.

X = |U| x K matrix (A matrix with dimensions
of num_users * factors)

Y = |P| x K matrix (A matrix with dimensions
of factors * num_songs)

users

~songs
R

listening data
play counts

users

factors
XT

user profiles
latent factors

songs

song profiles
latent factors

factors

MATRIX FACTORIZATION-BASED ENGINE

Whiteboard Explanation

Singular Value Decomposition

Given some input matrix M, the formula for SVD can be outlined as seen below:

M = UZVT

M : An m x n matrix which you want to decompose
U : An m x m complex unitary matrix (left singular vectors)
> : An m x n rectangular diagonal matrix (holds the eigenvalues)

V1 An n x n complex unitary matrix (right singular vectors)

Step 1: Transform the matrix M into a square matrix by multiplying it by its transpose: M*MT

Step 2: Calculate the eigenvalues & eigenvectors of matrix M*MT. The results of this will correspond to the ¥ and U
matrices.

Step 3: Solve for V by using the following formula: V = 1/2 * MT * U

Construct
START —% cooccurrence matrix
for given user

ola MATRIX FACTORIZATION-BASED ENGINE

matrices u,s,v using
svds (scipy lib
python)

Initialize 2 matrices ratings

Multiply s,v to get (same size as cooccurrence

———» matrix) and predictions (size

R eaquivalent o len(users) to INPUT - rimary Matri, No ofLatent Factorsf INPUT -, S, V, user st
l QUTPUT - 3 Decomposed Matrices U, S, V QUTPUT - Top 10 recommended songs
- 1: Use SVDs from Scipy Library 1: Multply S, V and store as song_features

2:Decompose nto3U, s,V 2:Initialize 2 matrices Ratings and Predictions to 0

Convert the dot product of

user row and 3 Foreachxins: 3:For each user in user st
song_cross_features to

dense matrix using
S & Sz sqrtfy) 4 product = ser * song_features

The dense matrix 5:End For each 5: Ratingluser] := convert product matrix to dense matrix
value is stored in
Ratings matrix

6: Convert U,V into matrxusing e matrx b: Predictons[use] = Sot Ratigs

Ratings sorted in 1 .
descending order is T:Retun U, S,V 7:End For each

stored in Predictions
matrix

8: Return Top 10 from Predictions[user]

i

Given user,
Return top n corresponding row of
recommendations prediction is the
recommendation

END I E—

EVALUATION METRICS

INPUT — Dataset, Song

OUTPUT - Probability of the Song being listened to

1: Group the dataset by songs

2: Search for the input song group

3: Count the users who listened to the song
4: Probability = count/length(dataset)

5: Return Probability

The cumulative probability of a given recommendation model can
be determined by calculating the sum of all top n recommended
songs that are the output of a given recommendation model.

IMPLEMENTATION

SIMULATIONS

C ® 127.0.0.1:9000 ® %

estTop 10 Real T.. § Duo multifactor aut.. @ The EyeWriter: 105.. @ Introduction to FF Top 30 loT Projects atest 2019 10T Pro

MUSIC RECOMMENDATION
SYSTEM =
Vo g

Welcome to the Music Recommendation Platform
oser vo: [

VSRR d Choose the type of Recommendation Model: [N EHIN R LSS S
Choose the type of Recommendation Model: Popularity-based

<= < Similarity-based
Matrix Factorization-based

7z R

| Provide Recommendation | LS

TOP 10 RECOMMENDED \$ONGS FOR'THIS USER: Provide Recommendation

SIMULATIONS

R Emai X Desk X inde) X style. X Millic X @ Inde X [Grad X | @ Focu X | N\ Para X | y Yang X | & Wha' X | + a X
= C ® 127.00.1:9000/index 2 % « & O &
@ USP Intervie tTop 10Real T.. {y Duo multifactor aut.. & The EyeWriter: 10S.. @ Introduction to FPG... BB Top 30 loT Projects » Other book

MUSIC RECOMMENDATION
SYSTEM

Welcome to the Music Recommendation Platform

oservo: I

=

Choose the type of Recommendation Model: [gsNEINGEEES]

~

Provide Recomment n

TOP 10 RECOMMENDED, 8ONGS FOR THIS USER:
Dancing In The Moonlight (It's Caught Me In It's Spotlight) - Thin Lizzy
My Generétion - Di-rect
Ready to Flow 2008 - Mike Nero
Now That We Found Love - Heavy D & The Boyz / Aaron Hall

A Well Respected Manf- The Kinks
Lights And Thunder:*~ White Lion

Untitled (Domestic Album Version) - Simple Plan

Amerika - Left Lane Cruiser
Leave My Girl Alone - Stevie Ray Vaughangdnd Double Trouble
Love Will Keep Us Together - Ca/ptain & Te:iniIle\
M

[IAVRTETTON

it BE Q search LoBade @m@

1033 PM
A dx &
N DD e ©

OBSERVATIONS AND RESULTS

— matrix factorization based
similarity based
------- popularity based

0.010

0.005

0 50 100 150 200
No of Latent Factors

Probability of listening to Rec
2
6))

OBSERVATIONS AND RESULTS

0.004 —— popularity based
similarity based
—— matrix factorization based

Probability of listening
o o
o o
o o
N w

=
o
2
\
\
L
)

0.000 S

nth recommendation

REFLECTIONS

Popularity-based: lacks customization
Similarity-based: time-consuming

Matrix factorization-based: quick and has
customization

To be noted:

Possibility of overfitting in matrix factorization-
based, so number of latent factors must be
optimal

L

FUTURE SCOPE

Come up with a weighted metrics
based on positioning of the
recommendation.

Compare and contrast several
matrix factorization techniques

REFERENCES

Chen, Zhaoliang, and Shiping Wang. "A review on matrix completion for recommender systems." Knowledge and
Information Systems (2022): 1-34.

Rakshit, Pranati, Sougata Saha, Arindam Chatterjee, Subhayan Mistri, Swagata Das, and Gunjan Dhar. "A Popularity-
Based Recommendation System Using Machine Learning." In Machine Learning in Information and Communication
Technology: Proceedings of ICICT 2021, SMIT, pp. 143-150. Singapore: Springer Nature Singapore, 2022.

Vineela, A., G. Lavanya Devi, Naresh Nelaturi, and G. Dasavatara Yadav. "A comprehensive study and evaluation of
recommender systems." In Microelectronics, Electromagnetics and Telecommunications: Proceedings of the Fifth
ICMEET 2019, pp. 45-53. Springer Singapore, 2021.

Hu, Yifan, Yehuda Koren, and Chris Volinsky. "Collaborative filtering for implicit feedback datasets." In 2008 Eighth
IEEE international conference on data mining, pp. 263-272. leee, 2008.

THANK YO* NG
ANY QUESTIONS/SUGGESTIONS? = ™

u L)
| _—
)

