
Enhancing Sequential Data Analysis Using
the RVT Block Structure
Integrating Convolution, Self-Attention, and LSTM

By - Sai Sirisha Vadapalli

Roadmap

Introduction,
Challenges, and

Evolution

Understanding
RVT and Its

Components

Code
Implementation
and Implications

Introduction,
Challenges,
and
Evolution

Introduction to Sequential
Visual Data

• Sequential visual data consists of a series of images or
frames presented in a specific order.

• Each image follows the previous one, creating a sequence
that captures changes over time.

Real- Time Examples:

• Live Video Streams: Instagram Stories, TikTok Live

• Video Conferencing: Zoom Meetings, Microsoft Teams

• Tesla Dataset: Camera Feeds, LiDAR and Radar
Reading, Sensor Fusion

The Challenges of
Sequential Visual Data

The challenge with sequences of images and videos is understanding
how things change over time and figuring out the connections
between different moments.

Some of the challenges are:
• Understanding Time-Dependent Changes
• Temporal Patterns and Context
• Complex Dependencies
• Variable Sequence Lengths
• Real-World Applications

Evolution of Approaches
for Sequential Visual Data

• RNN's: Recurrent Neural Networks (RNNs) were widely
used to analyze sequential visual data.
• RNNs could capture temporal patterns and
dependencies in sequences.

• Rise of Transformers: Transformers gained prominence
in natural language processing for capturing long-range
dependencies.
• The success led to exploring their potential in handling
sequential visual data.
• But they have limitation.

Integration of Transformers
and RNNs in Sequential Visual
Data

• The success of Transformers in language tasks sparked interest in
adapting them to sequential visual data, like images and videos.

• Concurrently, Recurrent Neural Networks (RNNs) excelled in
modeling sequential data, capturing temporal patterns over time
• The idea of combining Transformers' global context understanding
with RNNs' temporal pattern recognition emerged as a solution.

• Recurrent Vision Transformers (RVT) came into the picture as a
novel architecture that bridges the strengths of both RNNs and
Transformers.

Understanding RVT
and Its Components

Recurrent
Vision

Transformer
–

Introduction
and

Significance

RVT combines two powerful
concepts: Transformers and
Recurrent Neural Networks (RNNs).

It's designed for enhancing image
understanding and sequential
modeling.

This architecture is particularly useful
for tasks involving time-dependent
visual data.

Why Combine Transformers
and RNNs in RVT?

• Combining Transformers and Recurrent Neural Networks (RNNs) in
Recurrent Vision Transformers (RVT) leverages their strengths for
handling sequence-based visual data challenges.

• Strengths:

1. Enhanced Sequential Understanding

2. Global and Local Context

3. Complex Temporal Dependencies

4. Robustness to Sequence Lengths Improved Generalization

5. Innovative Solutions

• This combination enables RVT to understand complex patterns and
temporal dynamics in sequential visual data

RVT Block
Structure

• The Recurrent Vision Transformer (RVT) Block is a fundamental
building block that combines attention mechanisms and LSTM
processing for sequential visual data

• Key Components:
• Block Self-Attention
• Grid Self-Attention
• MLP Block
• LSTM Block

Block Self- Attention
The Block Self-Attention mechanism focuses on understanding relationships
between different positions within a local region of the input feature map

Block SA operates within a specific spatial neighborhood to capture
contextual information effectively.

Key Steps in Block
Self- Attention
q Convolutional Feature Extraction:

q Input is convolved through a conv2d_input layer, extracting local patterns.

q Feature Refinement with Convolutional Layers and Sigmoid:
q Resulting feature map undergoes two 3x3 convolutions.
q Convolutional layers uncover spatial relationships, enriched by a sigmoid

activation.

q Attention Map Generation:
q Sigmoid output forms an attention map.
q Map reflects position importance within the local context.

q Feature Modulation:
q Attention map modulates the original feature map.
q Relevant positions are amplified, less relevant ones suppressed.

Grid Self-Attention

The GridSelfAttention class is designed to capture long-range
dependencies within input data, such as images or feature maps.

It achieves this by utilizing a specialized form of convolution called a
dilated convolution.

The output of the dilated convolution is passed through a ReLU
(Rectified Linear Unit) activation function, which introduces non-
linearity and helps in learning complex patterns and relationships.

Grid Self-Attention

• Class Definition: Define the GridSelfAttention class as a subclass of
tf.keras.layers.Layer.

• Initialization: In the constructor, specify the number of channels for
the convolutional operation.

• Convolution with Dilation: Initialize a Conv2D layer with a dilation
rate to capture long-range dependencies.

• ReLU Activation: Apply the ReLU activation function to the
convolutional output, enhancing non-linearity and feature
extraction.

• Call Method: Implement the call method to pass input data through
the dilated convolution and ReLU activation.

Multi-Layer Perceptron
• The MLPBlock (Multi-Layer Perceptron Block) plays a role in introducing non-linear

transformations to the input data.

• It consists of a series of fully connected layers (also known as dense layers), where
each neuron is connected to all neurons in the previous layer.

• ReLU (Rectified Linear Unit) activation functions are applied to the outputs of these
dense layers, introducing non-linearity and allowing the network to learn complex
patterns.

• The final layer of the MLPBlock reduces the output dimensions, often leading to a
higher-level representation of the input data.

Multi-Layer Perceptron

• Class Definition: Define the MLPBlock class as a subclass of
tf.keras.layers.Layer.

• Initialization: In the constructor, provide the list of hidden units and
the number of output channels.

• Dense Layers: Create a list of Dense layers with ReLU activation for
each specified number of hidden units.

• Output Layer: Add a final Dense layer to reduce the output
dimensions to the desired number of output channels.

• Call Method: Implement the call method to sequentially pass input
through hidden layers and the final output layer.

Long- Short Term Memory
• The MLPBlock (Multi-Layer Perceptron Block) plays a role in introducing non-linear

transformations to the input data.

• It consists of a series of fully connected layers (also known as dense layers), where
each neuron is connected to all neurons in the previous layer.

• ReLU (Rectified Linear Unit) activation functions are applied to the outputs of these
dense layers, introducing non-linearity and allowing the network to learn complex
patterns.

• The final layer of the MLPBlock reduces the output dimensions, often leading to a
higher-level representation of the input data.

Long- Short Term Memory

• Class Definition: Define the RVTBlock class including LSTM as a
recurrent layer.

• Initialization: Specify the input channels, output channels, and
LSTM hidden size.

• LSTM Layer: Initialize the LSTM layer with the specified hidden size.
• Call Method: In the call method, reshape the input data for LSTM

processing.
• LSTM Processing: Pass the reshaped input through the LSTM layer

with initial hidden and cell states.
• Hidden and Cell States: Retrieve the LSTM outputs, new hidden

states, and new cell states for the next time step.

Code Implementation
and Implications

Setting the Stage: Libraries and
Dataset

Libraries Used:

• matplotlib.pyplot: Employed for visualization creation,
including plots of attention and feature maps, as well as
output analyses.

• tensorflow: Leveraged from TensorFlow, an open-source
ML framework, for constructing neural network models
with specialized layers, convolution operations, and LSTM
cells.

• numpy: Utilized for numerical operations, specifically
generating synthetic input data for the purpose of
demonstrating the RVT architecture.

Hyperparameter
Configuration and
Creating RVTBlock Instance

• Hyperparameters are pivotal settings that fundamentally shape the
behavior of a machine learning model. In the context of our
codebase, we meticulously configure the subsequent
hyperparameters:

• output_channels: A determinant of feature representation depth,
thereby influencing model capacity and complexity.

• lstm_hidden_size: Dictates the quantity of hidden units within the
LSTM layer, pivotal for capturing sequential dependencies.

• These hyperparameter configurations are of paramount significance,
as they enable fine-tuning the Recurrent Vision Transformer (RVT)
model to align with the specific task demands.

Creating RVTBlock Instance

• The following instantiation suffices for this encapsulation:

• rvt_block = RVTBlock(input_channels=3, output_channels=output_channels,
lstm_hidden_size=lstm_hidden_size)

• input_channels=3: Explicitly specifies the quantity of input channels, pertinent in
scenarios such as RGB image processing.

• output_channels=output_channels: Defines the output channel dimensionality for layers
within the RVTBlock.

• lstm_hidden_size=lstm_hidden_size: Configures the count of hidden units nestled within
the LSTM layer.

Generating Random Data
and Sequential Processing Step

Random Data Generation:
• num_samples: 2
• sequence_length: 2
• input_height: 3
• input_width: 3
• input_channels: 1

• Data Shape: (num_samples, sequence_length, input_height,
input_width, input_channels).

Sequential Processing
Step

• Time Steps Loop:
• Iterate over each time step in the sequence.

• Convolutional Feature Extraction:
• Obtain features through convolutional layers.
• Extract features using rvt_block.conv2d_input(random_input[:, t]).

• Block-Level Self-Attention:
• Apply BlockSelfAttention mechanism.
• Compute x_block_sa = rvt_block.block_sa(x_conv).

• Attention Map Evolution:
• Visualize attention maps for insight.
• Store mean_attention_map from x_block_sa.

Sequential Processing
Step

• Grid Self-Attention:
• Apply GridSelfAttention mechanism.
• Compute x_grid_sa = rvt_block.grid_sa(x_conv).

• MLP and LSTM Processing:
• Process through MLPBlock and LSTM layers.
• Calculate x_mlp = rvt_block.mlp_block(x_block_sa).
• Combine features x_combined = x_mlp + x_grid_sa.

• Reshaping for LSTM:
• Reshape for LSTM input.
• Convert x_combined into x_reshaped for LSTM.

Sequential Processing
Step

LSTM Processing:
• Process through LSTM layer.
• Obtain LSTM output, hidden states, and new

LSTM states.
• Store lstm_out, new_lstm_states_h, new_lstm_states_c.

This sequence showcases how input data evolves through various
processing steps in the RVTBlock architecture

.

Convolutional Feature
Extraction and Attention
Mechanisms

• Convolutional Feature Extraction:
• The conv2d_input method applies a convolutional layer to the

input data.
• x_conv = rvt_block.conv2d_input(random_input[:, t])
• Convolutional layers extract features using kernels that slide over

the input.
• They capture spatial hierarchies and identify patterns in the data.

Convolutional Feature
Extraction and Attention
Mechanisms

• Convolutional Feature Extraction:
• The conv2d_input method applies a convolutional layer to the

input data.
• x_conv = rvt_block.conv2d_input(random_input[:, t])
• Convolutional layers extract features using kernels that slide over

the input.
• They capture spatial hierarchies and identify patterns in the data.

Attention
Mechanisms

• Block Self-Attention

• The BlockSelfAttention layer calculates attention
weights using convolutions and a sigmoid activation.
x_block_sa = rvt_block.block_sa(x_conv)

• Self-attention enhances representations by learning
interdependencies within the same feature map.

• The sigmoid activation scales attention weights between
0 and 1.

Attention
Mechanisms

• Grid Self-Attention:
• The GridSelfAttention layer employs dilated

convolutions to capture long-range dependencies.
•

x_grid_sa = rvt_block.grid_sa(x_conv)
• Grid self-attention expands the receptive field,

enabling the model to consider broader contexts.
• Dilated convolutions effectively incorporate

information from distant positions.

MLP and LSTM
Processing

• MLP : Multi-Layer Perceptron (MLP) Block
• The MLPBlock layer consists of densely connected

layers.
• x_mlp = rvt_block.mlp_block(x_block_sa)
• MLP layers learn complex, nonlinear patterns in the

data.
• Hidden units progressively reduce dimensions to

extract high-level features.

MLP and LSTM
Processing

• LSTM Block Integration:

• LSTM captures sequential patterns and maintains
hidden states.

• lstm_out, new_lstm_states_h, new_lstm_states_c =
rvt_block.lstm_block(x_reshaped,
initial_state=lstm_states)

• LSTM takes reshaped, combined features and learns
temporal dependencies.

• Hidden states store learned context and influence future
predictions.

Attention Evolution
and Output Analysis

Output Analysis
1. Convolutional Feature Extraction:
 - The Conv2D layer extracts essential features from the input data.

 - Visualization: Features are represented using the 'viridis' color map.
Darker shades highlight lower values, while brighter shades indicate higher
values.

2. Block Self-Attention:
 - This mechanism applies self-attention to extracted features.
- Visualization: Attention maps use the 'hot' color map. Warmer colors (reds)

indicate higher attention values, while cooler colors (blues) indicate lower
attention values.

3. Evolution of Attention Maps:
 - Attention maps evolve as the model processes the sequence.
- Visualization: 'hot' color map tracks attention changes. Warmer colors

signify higher attention areas, and cooler colors signify lower attention areas.

Output Analysis
4. Grid Self-Attention:

 - Grid Self-Attention captures long-range dependencies.

 - Visualization: 'hot' color map highlights spatial relationships. Warmer colors denote
areas of higher attention.

5. Combined Output Analysis:

 - Combined output merges features from Block Self-Attention and Grid Self-Attention.

- Visualization: 'gray' color map showcases individual features. Lighter shades
represent higher values, and darker shades represent lower values.

6. LSTM Outputs and Hidden States Visualization:

 - LSTM processes sequences over time steps.

- Visualization: Green (LSTM outputs) and purple (hidden states) colors distinguish
outputs in the plot.

Future Exploration

Model Behavior Analysis: Delve into how the RVT model
performs when exposed to various hyperparameters and
different types of data domains.
Visualizing Deeper Insights: Experiment with alternative
visualization methods to gain a richer understanding of the
attention mechanisms and their impact.

Performance Benchmarking: Evaluate the RVT architecture's
effectiveness by benchmarking it against established datasets,
allowing a comparison of its outcomes with prevailing
techniques.

Key Takeaways

Reshaping Computer Vision: The Recurrent Vision
Transformer (RVT) introduces a powerful fusion of
transformer and recurrent layers, revolutionizing the
handling of intricate visual data.

Unveiling Modern Neural Dynamics: Through this
exploration, we've uncovered the intricate dynamics of the
RVT model, contributing to a better grasp of cutting-edge
neural architecture.

THANK YOU

