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Introduction to Sequential 
Visual Data

• Sequential visual data consists of a series of images or 
frames presented in a specific order.

• Each image follows the previous one, creating a sequence 
that captures changes over time.

Real- Time Examples:

• Live Video Streams: Instagram Stories, TikTok Live

• Video Conferencing: Zoom Meetings, Microsoft Teams

• Tesla Dataset: Camera Feeds, LiDAR and Radar 
Reading, Sensor Fusion



The Challenges of 
Sequential Visual Data

The challenge with sequences of images and videos is understanding 
how things change over time and figuring out the connections 
between different moments.

Some of the challenges are:
• Understanding Time-Dependent Changes
• Temporal Patterns and Context
• Complex Dependencies
• Variable Sequence Lengths
• Real-World Applications



Evolution of Approaches 
for Sequential Visual Data

• RNN's: Recurrent Neural Networks (RNNs) were widely 
used to analyze sequential visual data.
• RNNs could capture temporal patterns and 
dependencies in sequences.

• Rise of Transformers: Transformers gained prominence 
in natural language processing for capturing long-range 
dependencies.
• The success led to exploring their potential in handling 
sequential visual data.
• But they have limitation.



Integration of Transformers 
and RNNs in Sequential Visual 
Data

• The success of Transformers in language tasks sparked interest in 
adapting them to sequential visual data, like images and videos.

• Concurrently, Recurrent Neural Networks (RNNs) excelled in 
modeling sequential data, capturing temporal patterns over time
• The idea of combining Transformers' global context understanding 
with RNNs' temporal pattern recognition emerged as a solution.

• Recurrent Vision Transformers (RVT) came into the picture as a 
novel architecture that bridges the strengths of both RNNs and 
Transformers.



Understanding RVT 
and Its Components



Recurrent 
Vision 

Transformer 
– 

Introduction
and

Significance

RVT combines two powerful 
concepts: Transformers and 
Recurrent Neural Networks (RNNs).

It's designed for enhancing image 
understanding and sequential 
modeling.

This architecture is particularly useful 
for tasks involving time-dependent 
visual data.



Why Combine Transformers 
and RNNs in RVT?

• Combining Transformers and Recurrent Neural Networks (RNNs) in 
Recurrent Vision Transformers (RVT) leverages their strengths for 
handling sequence-based visual data challenges.

• Strengths:

1. Enhanced Sequential Understanding

2. Global and Local Context

3. Complex Temporal Dependencies

4. Robustness to Sequence Lengths Improved Generalization

5. Innovative Solutions

• This combination enables RVT to understand complex patterns and 
temporal dynamics in sequential visual data



RVT Block 
Structure

• The Recurrent Vision Transformer (RVT) Block is a fundamental 
building block that combines attention mechanisms and LSTM 
processing for sequential visual data

• Key Components:
• Block Self-Attention
• Grid Self-Attention
• MLP Block
• LSTM Block



Block Self- Attention
The Block Self-Attention mechanism focuses on understanding relationships 
between different positions within a local region of the input feature map

Block SA operates within a specific spatial neighborhood to capture 
contextual information effectively.



Key Steps in Block 
Self- Attention
q Convolutional Feature Extraction:

q Input is convolved through a conv2d_input layer, extracting local patterns.

q Feature Refinement with Convolutional Layers and Sigmoid:
q Resulting feature map undergoes two 3x3 convolutions.
q Convolutional layers uncover spatial relationships, enriched by a sigmoid 

activation.

q Attention Map Generation:
q Sigmoid output forms an attention map.
q Map reflects position importance within the local context.

q Feature Modulation:
q Attention map modulates the original feature map.
q Relevant positions are amplified, less relevant ones suppressed.



Grid Self-Attention

The GridSelfAttention class is designed to capture long-range 
dependencies within input data, such as images or feature maps.

It achieves this by utilizing a specialized form of convolution called a 
dilated convolution.

The output of the dilated convolution is passed through a ReLU 
(Rectified Linear Unit) activation function, which introduces non-
linearity and helps in learning complex patterns and relationships.



Grid Self-Attention

• Class Definition: Define the GridSelfAttention class as a subclass of 
tf.keras.layers.Layer.

• Initialization: In the constructor, specify the number of channels for 
the convolutional operation.

• Convolution with Dilation: Initialize a Conv2D layer with a dilation 
rate to capture long-range dependencies.

• ReLU Activation: Apply the ReLU activation function to the 
convolutional output, enhancing non-linearity and feature 
extraction.

• Call Method: Implement the call method to pass input data through 
the dilated convolution and ReLU activation.



Multi-Layer Perceptron
• The MLPBlock (Multi-Layer Perceptron Block) plays a role in introducing non-linear 

transformations to the input data.

• It consists of a series of fully connected layers (also known as dense layers), where 
each neuron is connected to all neurons in the previous layer.

• ReLU (Rectified Linear Unit) activation functions are applied to the outputs of these 
dense layers, introducing non-linearity and allowing the network to learn complex 
patterns.

• The final layer of the MLPBlock reduces the output dimensions, often leading to a 
higher-level representation of the input data.



Multi-Layer Perceptron

• Class Definition: Define the MLPBlock class as a subclass of 
tf.keras.layers.Layer.

• Initialization: In the constructor, provide the list of hidden units and 
the number of output channels.

• Dense Layers: Create a list of Dense layers with ReLU activation for 
each specified number of hidden units.

• Output Layer: Add a final Dense layer to reduce the output 
dimensions to the desired number of output channels.

• Call Method: Implement the call method to sequentially pass input 
through hidden layers and the final output layer.



Long- Short Term Memory
• The MLPBlock (Multi-Layer Perceptron Block) plays a role in introducing non-linear 

transformations to the input data.

• It consists of a series of fully connected layers (also known as dense layers), where 
each neuron is connected to all neurons in the previous layer.

• ReLU (Rectified Linear Unit) activation functions are applied to the outputs of these 
dense layers, introducing non-linearity and allowing the network to learn complex 
patterns.

• The final layer of the MLPBlock reduces the output dimensions, often leading to a 
higher-level representation of the input data.



Long- Short Term Memory

• Class Definition: Define the RVTBlock class including LSTM as a 
recurrent layer.

• Initialization: Specify the input channels, output channels, and 
LSTM hidden size.

• LSTM Layer: Initialize the LSTM layer with the specified hidden size.
• Call Method: In the call method, reshape the input data for LSTM 

processing.
• LSTM Processing: Pass the reshaped input through the LSTM layer 

with initial hidden and cell states.
• Hidden and Cell States: Retrieve the LSTM outputs, new hidden 

states, and new cell states for the next time step.



Code Implementation 
and Implications



Setting the Stage: Libraries and 
Dataset

Libraries Used:

• matplotlib.pyplot: Employed for visualization creation, 
including plots of attention and feature maps, as well as 
output analyses.

• tensorflow: Leveraged from TensorFlow, an open-source 
ML framework, for constructing neural network models 
with specialized layers, convolution operations, and LSTM 
cells.

• numpy: Utilized for numerical operations, specifically 
generating synthetic input data for the purpose of 
demonstrating the RVT architecture.



Hyperparameter 
Configuration and
Creating RVTBlock Instance

• Hyperparameters are pivotal settings that fundamentally shape the 
behavior of a machine learning model. In the context of our 
codebase, we meticulously configure the subsequent 
hyperparameters:

• output_channels: A determinant of feature representation depth, 
thereby influencing model capacity and complexity.

• lstm_hidden_size: Dictates the quantity of hidden units within the 
LSTM layer, pivotal for capturing sequential dependencies.

• These hyperparameter configurations are of paramount significance, 
as they enable fine-tuning the Recurrent Vision Transformer (RVT) 
model to align with the specific task demands.



Creating RVTBlock Instance

• The following instantiation suffices for this encapsulation:

•   rvt_block = RVTBlock(input_channels=3, output_channels=output_channels, 
lstm_hidden_size=lstm_hidden_size)

• input_channels=3: Explicitly specifies the quantity of input channels, pertinent in 
scenarios such as RGB image processing.

• output_channels=output_channels: Defines the output channel dimensionality for layers 
within the RVTBlock.

• lstm_hidden_size=lstm_hidden_size: Configures the count of hidden units nestled within 
the LSTM layer.



Generating Random Data 
and Sequential Processing Step

Random Data Generation:
• num_samples: 2
• sequence_length: 2
• input_height: 3
• input_width: 3
• input_channels: 1

• Data Shape: (num_samples, sequence_length, input_height, 
input_width, input_channels).



Sequential Processing 
Step

• Time Steps Loop:
• Iterate over each time step in the sequence.

• Convolutional Feature Extraction:
• Obtain features through convolutional layers.
• Extract features using rvt_block.conv2d_input(random_input[:, t]).

• Block-Level Self-Attention:
• Apply BlockSelfAttention mechanism.
• Compute x_block_sa = rvt_block.block_sa(x_conv).

• Attention Map Evolution:
• Visualize attention maps for insight.
• Store mean_attention_map from x_block_sa.



Sequential Processing 
Step

• Grid Self-Attention:
• Apply GridSelfAttention mechanism.
• Compute x_grid_sa = rvt_block.grid_sa(x_conv).

• MLP and LSTM Processing:
• Process through MLPBlock and LSTM layers.
• Calculate x_mlp = rvt_block.mlp_block(x_block_sa).
• Combine features x_combined = x_mlp + x_grid_sa.

• Reshaping for LSTM:
• Reshape for LSTM input.
• Convert x_combined into x_reshaped for LSTM.



Sequential Processing 
Step

LSTM Processing:
• Process through LSTM layer.
• Obtain LSTM output, hidden states, and new 

LSTM states.
• Store lstm_out, new_lstm_states_h, new_lstm_states_c.

This sequence showcases how input data evolves through various 
processing steps in the RVTBlock architecture

.



Convolutional Feature 
Extraction and Attention 
Mechanisms

• Convolutional Feature Extraction:
• The conv2d_input method applies a convolutional layer to the 

input data.
• x_conv = rvt_block.conv2d_input(random_input[:, t])
• Convolutional layers extract features using kernels that slide over 

the input.
• They capture spatial hierarchies and identify patterns in the data.



Convolutional Feature 
Extraction and Attention 
Mechanisms

• Convolutional Feature Extraction:
• The conv2d_input method applies a convolutional layer to the 

input data.
• x_conv = rvt_block.conv2d_input(random_input[:, t])
• Convolutional layers extract features using kernels that slide over 

the input.
• They capture spatial hierarchies and identify patterns in the data.



Attention 
Mechanisms

• Block Self-Attention

• The BlockSelfAttention layer calculates attention 
weights using convolutions and a sigmoid activation.
x_block_sa = rvt_block.block_sa(x_conv)

• Self-attention enhances representations by learning 
interdependencies within the same feature map.

• The sigmoid activation scales attention weights between 
0 and 1.



Attention 
Mechanisms

• Grid Self-Attention:
• The GridSelfAttention layer employs dilated 

convolutions to capture long-range dependencies.
•

x_grid_sa = rvt_block.grid_sa(x_conv)
• Grid self-attention expands the receptive field, 

enabling the model to consider broader contexts.
• Dilated convolutions effectively incorporate 

information from distant positions.



MLP and LSTM 
Processing

• MLP : Multi-Layer Perceptron (MLP) Block
• The MLPBlock layer consists of densely connected 

layers.
• x_mlp = rvt_block.mlp_block(x_block_sa)
• MLP layers learn complex, nonlinear patterns in the 

data.
• Hidden units progressively reduce dimensions to 

extract high-level features.



MLP and LSTM 
Processing

• LSTM Block Integration:

• LSTM captures sequential patterns and maintains 
hidden states.

• lstm_out, new_lstm_states_h, new_lstm_states_c = 
rvt_block.lstm_block(x_reshaped, 
initial_state=lstm_states)

• LSTM takes reshaped, combined features and learns 
temporal dependencies.

• Hidden states store learned context and influence future 
predictions.



Attention Evolution 
and Output Analysis



Output Analysis
1. Convolutional Feature Extraction:
 - The Conv2D layer extracts essential features from the input data.

 - Visualization: Features are represented using the 'viridis' color map. 
Darker shades highlight lower values, while brighter shades indicate higher 
values.

2. Block Self-Attention:
 - This mechanism applies self-attention to extracted features.
- Visualization: Attention maps use the 'hot' color map. Warmer colors (reds) 

indicate higher attention values, while cooler colors (blues) indicate lower 
attention values.

3. Evolution of Attention Maps:
 - Attention maps evolve as the model processes the sequence.
- Visualization: 'hot' color map tracks attention changes. Warmer colors 

signify higher attention areas, and cooler colors signify lower attention areas.



Output Analysis
4. Grid Self-Attention:

 - Grid Self-Attention captures long-range dependencies.

 - Visualization: 'hot' color map highlights spatial relationships. Warmer colors denote 
areas of higher attention.

5. Combined Output Analysis:

 - Combined output merges features from Block Self-Attention and Grid Self-Attention.

- Visualization: 'gray' color map showcases individual features. Lighter shades 
represent higher values, and darker shades represent lower values.

6. LSTM Outputs and Hidden States Visualization:

 - LSTM processes sequences over time steps.

- Visualization: Green (LSTM outputs) and purple (hidden states) colors distinguish 
outputs in the plot.



Future Exploration

Model Behavior Analysis: Delve into how the RVT model 
performs when exposed to various hyperparameters and 
different types of data domains.
Visualizing Deeper Insights: Experiment with alternative 
visualization methods to gain a richer understanding of the 
attention mechanisms and their impact.

Performance Benchmarking: Evaluate the RVT architecture's 
effectiveness by benchmarking it against established datasets, 
allowing a comparison of its outcomes with prevailing 
techniques.



Key Takeaways

Reshaping Computer Vision: The Recurrent Vision 
Transformer (RVT) introduces a powerful fusion of 
transformer and recurrent layers, revolutionizing the 
handling of intricate visual data.

Unveiling Modern Neural Dynamics: Through this 
exploration, we've uncovered the intricate dynamics of the 
RVT model, contributing to a better grasp of cutting-edge 
neural architecture.
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