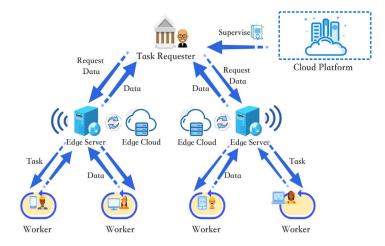

Optimizing Mobile Crowdsourcing Quality with Four-Party Evolutionary Game in Edge Cloud Environment

Haijing Zhang

Department of Computer Science



Motivation

Optimizing MCS quality:

- Four-party evolutionary game model
 Mobile Edge Computing (MEC)
- Replicator dynamics approach
 Analysis of the strategic equilibrium points
- Incentive mechanism
- Potential collusion scenarios

Approaches

Incentive Mechanism

Material incentive Immaterial incentive

Evolutionary Game Theory

Game theory + dynamic evolutionary processes = dynamic equilibrium

Edge Computing

Offload computing tasks onto the edge server

System Model

- Problem description: self-interested four parties
- Game Model Parameters

	Trustworthy	Untrustworthy	
Worker: Data quality	r	1 - r	
Cloud platform	m	1 - m	
Task requesters: compensation	р	1 - p	
Edge Server: control data	g	1 - g	

Description of Symbols in the Model

Notation	Description
Pi	The payment that requester pays platform and server
R	Reputation rewards for workers, edge servers, and platforms
S	Reputation loss for workers, edge servers, and platforms
R _h	Workers are compensated for providing high-quality data
R _I	Workers are compensated for providing low-quality data
C _{hi}	The cost incurred when workers provide high-quality data
C _{li}	The cost incurred when workers provide low-quality data
B _{tw}	Cost of collusion between workers and the platform
N _p	Platform regulation cost
B _{tq}	The cost associated with platform collusion with the requester
O _{ij}	Revenue generated for the requester through high-quality data
Sq	Reputation loss for the requesters
Rq	Reputation rewards for the requesters
Ag	Loss incurred due to low-quality data
C _{he}	Costs associated with strict quality control by Edge Servers
C _{le}	Costs associated with poor quality control by Edge Servers

Strategy Analysis

• Expected Revenue Function

≻Worker expectations:

E ₁₁ =	$mpg(R_{h} + R - C_{hi}) + m(1 - p)g(R_{h} + R - C_{hi}) + mp(1 - g)(R_{l} + R - C_{hi}) + m(1 - p)(1 - g)(R_{l} + R - C_{hi}) + (1 - m)pg(R_{h} + R - C_{hi}) + (1 - m)(1 - p)(1 - g)(R_{l} + R - C_{hi}) + (1 - m)p(1 - g)(R_{h} + R - C_{hi}) + (1 - m)(1 - p)(1 - g)(R_{l} + R - C_{hi})$	
E ₁₂ =	$mpg(-C_{li} - S) + m(1 - p)g(-C_{li} - S) + mp(1 - g)(-C_{li} - S) + m(1 - p)(1 - g)(-C_{li} - S) + (1 - m)pg(R_{h} - C_{li} - S - B_{tw}) + (1 - m)(1 - p)g(R_{l} - C_{li} - S) + (1 - m)p(1 - g)(R_{l} - C_{li} - S - B_{tw}) + (1 - m)(1 - p)(1 - g)(R_{l} - C_{li} - S)$	
$\overline{E}_1 =$	$rE_{11} + (1 - r)E_{12}$	

Worker strategy selection: Replicator dynamic equation

F(r) =	$dr/dt = r(E_{11} - \bar{E}_1) = -r(r - 1)(C_{1i} - C_{hi} + R + S + pB_{tw} + mR_1 + pR_h - pR_1 - mpB_{tw} + mgR_h - mgR_1 - gpR_h + pgR_1 - mpR_h + mpR_1$					
	mpgR _h – mpgR _l)					

Strategy Analysis

Expected Revenue Function

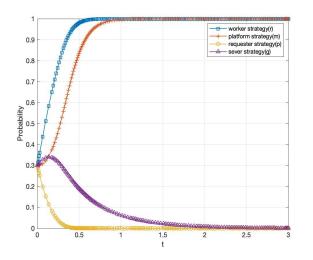
	Average: E _{i1} - trust strategy E _{i2:} distrust strategy	Replicator dynamic equation	
Platform	$\overline{E}_2 = mE_{21} + (1 - m)E_{22}$	$F(m) = dm/dt = m(E_{21} - \overline{E}_2)$	
Task requester	$\overline{E}_{3} = pE_{31} + (1 - p)E_{32}$	$F(p)=dp/dt=p(E_{31}-\overline{E}_3)$	
Edge server	$\overline{E}_4 = g E_{41} + (1 - g) E_{42}$	$F(g) = dg/dt = g(E_{41} - \overline{E}_4)$	

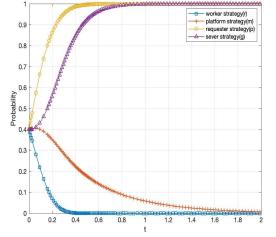
Stability analysis

≻Lyapunov first method

J	=	[J1 J5 J9 J13	J2 J6 J10 J14	J3 J7 J11 J15	J4 J8 J12 J16		
	=	∂F(1 ∂F(1 ∂F(2 ∂F(2) ∂F(1)	r)/ðr n)/ðr g)/ðr p)/ðr	∂F(∂F(∂F(∂F((r)/дт m)/дт (g)/дт (p)/дт	<i>∂F(r)/∂p</i> <i>∂F(m)/∂p</i> <i>∂F(g)/∂p</i> <i>∂F(p)/∂p</i>	$\partial F(r)/\partial g \ \partial F(m)/\partial g \ \partial F(m)/\partial g \ \partial F(g)/\partial g \ \partial F(g)/\partial g \ \partial F(p)/\partial g \end{bmatrix}$

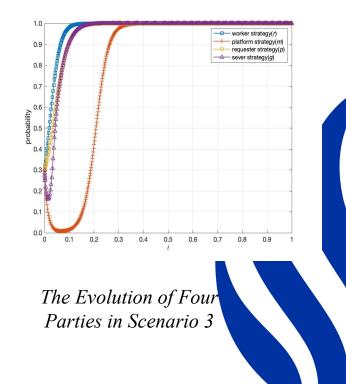
The Eigenvalues of the Jacobian Matrix


Assumption: C_{hi} - C_{li} > B_{tw} +S, R_h - R_l > B_{tq} + S_q , R+S > N_p , and S > R

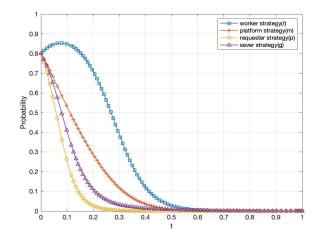

Equilibrium Point	λ	λ ₂	λ ₃	λ ₄	Stability Conclusion	Scenario	
E6(1,1,0,0)	C_{hi} - C_{li} - R - R_l - S	N _p - B _{tq} - R - S	R_{l} - R_{h} - P_{i} + R_{q} + S_{q}	C_{le} - C_{he} + R + S	ESS	1	
E11(0,0,1,1)	C_{li} - C_{hi} + R + S + B_{tw}	- N _p + S + B _{tw} - P _i *v	R _h - R _I - R _q - S _q	$P_i - C_{le} - S - P_i^* v$	ESS	2	
E16(1,1,1,1)	C _{hi} - C _{li} - R - R _h – S	N _p - R - S	$R_h - R_l - R_q - S_q$	$P_i - C_{le} - S - P_i^* v$	ESS	3	

Simulation Experiments

Stability Analysis

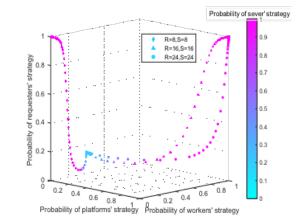


The Evolution of Four Parties in Scenario 1


r = m = p = g = 0.3

The Evolution of Four Parties in Scenario 2

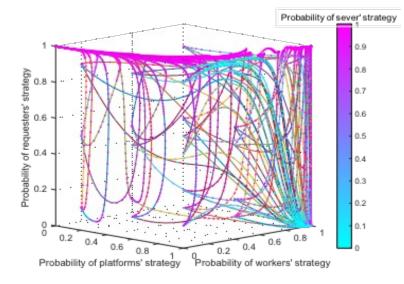
r=*m*=*p*=*g*=0.4



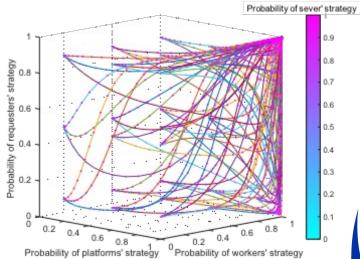
Impacts of Reward and Punishment

The Evolution of Four Parties without Reward and Punishment

$$r = m = p = g = 0.8$$



Comparison of Evolution Results without Reward and Punishment Strategies


r=*m*=*p*=*g*=0.2

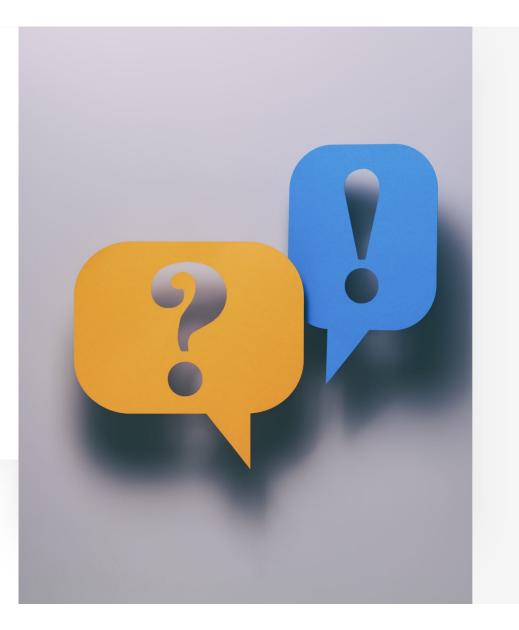
Equilibrium States with Different Initial Conditions

The stable equilibria: (1,1,0,0) and (0,0,1,1)

The system stability points: (1, 1, 1, 1)

Conclusion

- A Four-Party evolutionary game model is developed
- Computational tasks on edge servers
- Incorporate the potential collusion
- Simulation experiments
- Addressing the issues including dishonesty and false reporting
- Proposed reward and punishment system



Future Work

- Refinement of the incentive mechanism
- Diverse strategic choice
- Enhance the model's adaptability and predictive capabilities

Questions?

