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• The prolifera,on of wireless devices and technologies like 5G, IoT, and 
smart ci,es has increased spectrum demand.
• Effec,ve alloca,on and u,liza,on of limited spectrum resources are 

cri,cal.
• The need for sophis,cated methods to understand and predict 

spectrum u,liza,on pa@erns.

Introduc)on



• To explore advanced methods for radio spectrum prediction.
• Focus on three techniques: 

• GCN + LSTM: Uses GCNs (Graph Convolutional Network) for spatial structure 
and LSTM (Long Short-Term Memory) for temporal sequences.

• GCN + GRU: Similar to GCN + LSTM but uses GRUs (Gated Recurrent Unit) for 
a more computationally efficient alternative.

• A-GCRNN: Combines GCNs and RNNs (Recurrent Neural Networks) with an 
attention mechanism to enhance prediction accuracy.

Objec)ve



• Inter-band Dependencies: Rela,onships and interac,ons between 
different frequency bands at a given point in ,me.

• Temporal Dependencies: Rela,onships and pa@erns within the same 
frequency band over different ,me points. 

Inter-band dependencies and Temporal Dependencies in Spectrum Prediction



• Use of graphs to establish relationships between frequency bands 
(nodes) and their correlations (edges).

where xi, xj represent the PSD (Power Spectral Density) vectors of i and j frequency bands, respectively. Ρ represents the 
Pearson correlation coefficient, cov(·, ·) represents the covariance function, σ represents the standard deviation. 

Graph Construction



• The goal is to predict future spectrum status based on historical data.

• Graph is described as G = (V,E), where V = {v1,v2,··· ,vN} and N is the number of frequency bands.
• Feature matrices are used to represent the data features of each node and obtain relaFonships 

between data. Feature matrix is represented as X, X = {x1 , ..., xN} ∈ RN×T , where T represents the 
number of spectrum features (the length of the historical spectrum data).

• 𝑋!"  represents the PSD value of each frequency band at Fme t. Thus, the problem of mulF-band 
spectrum predicFon can be considered as learning the frequency band correlaFons and temporal 
correlaFons, and its expression is as follows: 

   𝑋!"#$, … , 𝑋!"#% = 𝑓(𝐺 𝑉, 𝐸 , (𝑋!"&', … , 𝑋!" ))
where n is the length of historical spectrum data and l is the length of the spectrum data needed 
to be predicted.

Problem Formula,on



• Measurement data is collected from 
four sensors located in Spain, within a 
6 km radius from the center of Madrid 
is considered. Spectrum situation is 
created based on the measurement 
data in a 4 km2 space area of interest. 

• The spectrum situation is updated 
every 1 minute from 1st June 2021 to 
8th June 2021. 

Dataset



• Combines GCN for spaOal dependencies 
and LSTM for temporal sequences.

• LSTM Unit:
• Input, Forget, Candidate and Output Gates:
    [i_t, f_t, g_t, o_t] = σ(A[x_t, h_{t-1}] W_1 + b_1 

where A is the Laplacian matrix with self-loops, x_t is the input at 8me t, 
h_{t-1} is the hidden state from the previous 8me step, W_1 and b_1 are 
learnable parameter and σ is the sigmoid ac8va8on func8on.

• New Cell State:
       c_t = tanh(A[x_t, (f_t ⊙ h_{t-1})] W_2 + b_2)

where f_t is the forget gate, ⊙ denotes element-wise mul8plica8on, W_2 
and b_2 are learnable parameters, and tanh is the hyperbolic tangent 
ac8va8on func8on.

• New Hidden State:
       h_t = g_t ⊙ c_t + i_t ⊙ tanh(h_{t-1}) 

where g_t is the candidate gate, i_t is the input gate, and o_t is the output 
gate. 

GCN + LSTM Model



• Similar to GCN + LSTM but uses GRU units 
but GRUs are simpler and more efficient.

• GRU Cell:

where XₜN represents the PSD value of each frequency band at 
Dme t, zₜ is the update gate, rₜ is the reset gate, hₜ−1 is the 
previous hidden state, hJₜ is the candidate hidden state, ⊙ 
denotes element-wise mulDplicaDon, hₜ is the current hidden 
state, and W_z, U_z, b_z, W_r, U_r, b_r, W_h, U_h, b_h are 
learnable parameters. 

GCN + GRU Model



• Integrates GCNs, GRUs, and an a]enFon mechanism, leveraging the strengths of each which 
enhances the ability to focus on important features within the data. 

• A]enFon Module:
• SoO AQenDon Network has been employed to compute the weights for the hidden states:

where H is the GRU output hidden state, H = {h1, h2, ..., hk}, k is the number of hidden layers, e is the result of linear 
weighDng, e = {e1, e2, ..., ek }, H is output of the aQenDon network, and Wa and ba are the learnable parameters of the 
aQenDon network. 

A-GCRNN



• Normalized Root Mean Square Error (RMSE)

• Goodness-of-fit performance (R²)
• Prediction accuracy for PSD values

Evalua,on Metrics



Results



Visualization of Test Set Prediction for rack_2, yago and rpi4 dataset using 
GCN+LSTM 



VisualizaKon of Test Set PredicKon for rack_2, yago and rpi4 dataset using 
GCN+GRU 



VisualizaKon of Test Set PredicKon for rack_2, yago and rpi4 dataset using            
A-GCRNN



• GCN + LSTM model effecFvely captures long-term temporal dependencies and is good at handling 
complex sequenFal data. But it struggles with computaFonal efficiency and training Fme and can 
someFmes overfit training data, leading to lower generalizaFon performance.

• GCN + GRU model is computaFonally more efficient and simpler than LSTMs and suitable for 
scenarios requiring faster computaFon. But it may not capture long-term dependencies as 
effecFvely as LSTMs and is less powerful in modeling complex temporal pa]erns.

• A-GCRNN model captures spaFal and temporal dependencies effecFvely and specifically the 
A]enFon mechanism enhances focus on the most relevant features, improving overall predicFon 
accuracy. But it increase model complexity and computaFonal requirements and may require more 
careful tuning.

Conclusion


