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U N D E R S T A N D I N G  

T E R M I N O L O G Y

The Basic Terminology we need 

to learn are:

1. Phoneme

2. Prosody

3. Audio

4. Mel-spectrogram



P H O N E M E

Phoneme is the smallest unit of sound that distinguishes 

one word from another in a language.



P R O S O D Y

Prosody refers to the patterns of rhythm, 

intonation, and stress used in speech.



A U D I O

• Computers understand audio through sampled air pressure, converted 
into numerical data.

• Sampling rate commonly set at 16 kHz, capturing sequences of 16,000 
amplitudes per second.

• Fourier transform helps extract information from the vast set of 
amplitudes. The Short-Time Fourier Transform (STFT) divides audio into 
shorter segments for analysis.

• STFT segments the signal into fixed intervals, controlling overlap and 
non-intersecting portions.

• Output represents amplitude in dB scale, providing insights into 
frequency and time.



M E L  S P E C T R O G R A M

• Helps TTS systems capture subtle sound differences and offers a 

practical way to analyze and generate speech.

• Mel Spectrogram is the representation of audio data in a way that 
matches how humans hear.

• Mel Scale: Adjusts frequencies to align with human perception. By 

using this, TTS systems can better capture nuances in speech.

• In a Mel Spectrogram, frequency is on the y-axis, time on the x-axis, 

and intensity shows sound amplitude.



B A S I C  A R C H I T E C T U R E  O F  A  T T S  

S Y S T E M



• Text Preprocessing: Extracts linguistic features from input text.

• Acoustic Model: Maps linguistic features to acoustic representations.

• Vocoder: Transforms acoustic features into speech waveform.



M O D E L

 &

 M E T H O D O L O G Y



T E X T  A N A L Y S I S



T R A N S F O R M E R S

• Key Components:

• Self-Attention Mechanism: Allows each word in the input sequence to attend to all other 

words, capturing long-range dependencies efficiently.

• Multi-Head Attention: Enables the model to focus on different parts of the input 

simultaneously, enhancing its ability to learn complex relationships.

• Positional Encoding: Provides information about the position of each word in the input 
sequence, overcoming the lack of sequential order in traditional neural networks.

• Advantages of Transformers:

• Parallelization: Self-attention mechanism enables parallel processing of input tokens, 
leading to faster training and inference.

• Scalability: Transformers can handle inputs of variable length, making them suitable for a 

wide range of NLP tasks.

• State-of-the-Art Performance: Transformers have achieved remarkable results on various 

NLP benchmarks, surpassing traditional models in terms of accuracy and efficiency.



B E R T  -  P R E T R A I N I N G

Masked Language Modeling (MLM):

• BERT randomly masks 15% of the tokens in each sequence.

• The model predicts the original value of the masked words based on 
context provided by other non-masked words.

• Enables bidirectional understanding of language, enriching contextual 
understanding.

Next Sentence Prediction (NSP):

• BERT learns to predict if the second sentence logically follows the first 
in pairs of sentences.

• Enhances understanding of relationships between consecutive 
sentences.

• Beneficial for tasks requiring comprehension of sentence relationships, 
like question answering and natural language inference.



B E R T  –  

F I N E T U N I N G

• In this phase, BERT is adapted to specific tasks using labeled task-

specific data, refining its performance.

• Fine-tuning Process:

• Input Task-Specific Data: Provide BERT with labeled 

examples relevant to the downstream task.

• Adjust Model Parameters: Update BERT's parameters during 

training to optimize performance for the specific task.

• Transfer Knowledge: BERT leverages its pretrained 

knowledge to learn task-specific patterns from the labeled 

data.

• Task-Specific Layers: Optionally, add task-specific layers on 

top of BERT to tailor it further to the task.



I N P U T  

E M B E D D I N G S

Tokenization: 

• Raw textual data is segmented into individual tokens, 

representing words or sub-words.

Special Token Insertion:

•  BERT's input sequence begins with a [CLS] token and 

ends with a [SEP] token.

• Additional [SEP] tokens are added between consecutive 

sentences.

Embedding:

•  Each token is converted into its corresponding Word 

Piece embedding vector.

Additive Embeddings:

• Learnable embeddings are added to each token vector 

to indicate its position in the sequence and sentence 

boundaries.

• This step ensures self-attention can distinguish each 

token's position and relationship within the sequence.



U N D E R S T A N D I N G  

T E X T  A N A L Y S I S



S P E E C H  A N A L Y S I S



W H Y  C H O O S E  

H U B E R T ?

• Existing model: The existing system relies on model wav2vec 2.0, 
utilizing CNNs and transformers. While effective, it struggles with 
capturing fine-grained acoustic details and long-range 
dependencies.

• HuBERT: This represents a novel approach that enhances 
traditional methods through advanced clustering techniques. 
These techniques contribute to improved speech representation 
learning.

• Advantages:

• Improved Representation: HuBERT's clustering 
mechanisms excel in capturing fine-grained acoustic 
details and long-term dependencies, surpassing wav2vec 
2.0.

• Enhanced Flexibility: Through iterative refinement of 
cluster assignments and cluster ensembles, HuBERT offers 
adaptability across diverse speech characteristics.

• Robust Performance: Experimental results consistently 
demonstrate HuBERT's superiority over wav2vec 2.0 in 
various speech-related tasks.

Note: ref https://arxiv.org/pdf/2308.03226.pdf

https://arxiv.org/pdf/2308.03226.pdf


H U B E R T  A R C H I T E C T U R E

• HuBERT has two main objectives:

• Acoustic modeling: Converting audio inputs into 
continuous latent representations.

• Capturing temporal dependencies: Understanding how 
these representations evolve over time.

• It encodes unmasked audio inputs into continuous latent 
representations to address the acoustic modeling challenge.

• The model emphasizes the importance of consistency in the k-
means mapping for clustering, enabling it to focus on 
sequential structure understanding.

• Iterative improvement occurs through alternating clustering 
and prediction steps, with early iterations informing 
subsequent clustering for better representation.



H U B E R T  C L U S T E R I N G



H U B E R T  P R E D I C T I O N



A U D I O  G E N E R A T I O N



E N C O D E C  B Y  

F A C E B O O K

EnCodec generates high-quality speech waveforms 
directly from linguistic features.

What EnCodec Offers:

• Seamless Integration: EnCodec seamlessly 
integrates into TTS pipelines, serving as a crucial 
component for synthesizing natural-sounding 
speech.

• High Fidelity: It produces speech waveforms with 
high fidelity and naturalness, capturing nuances in 
tone, intonation, and pronunciation.

• Low Latency: EnCodec operates efficiently, 
minimizing latency in real-time speech synthesis 
applications.

• Flexibility: The architecture of EnCodec allows for 
easy customization and adaptation to various 
languages, dialects, and speech styles.



W H Y ?  E N C O D E C

Superior Quality: EnCodec 
delivers superior speech quality 

compared to traditional 
vocoders, ensuring a more 
engaging and lifelike user 

experience.

State-of-the-Art Technology: 
Developed by Facebook 

Research, EnCodec represents 
the latest advancements in 

neural vocoder research, 
offering cutting-edge 

performance.

Robust Support: With ongoing 
updates and support from 

Facebook, EnCodec ensures 
reliability and scalability for your 

TTS project.

Enhanced User Experience: By 
incorporating EnCodec into your 

TTS system, you can provide 
users with an enhanced auditory 
experience, making interactions 
more immersive and engaging.



E N C O D E C  A R C H I T E C T U R E



E N C O D E C

• EnCodec architecture consists of an encoder, 
quantizer, and decoder, trained simultaneously.

• The encoder converts audio samples into fixed-
dimensional vectors.

• The quantizer compresses encoded vectors using 
Residual Vector Quantization (RVQ).

• The decoder reconstructs compressed signals into 
audio streams.



Q U A N T I Z E R

• The quantizer operates by comparing the input vector, which is 

typically a high-dimensional representation of an audio sample, with 

vectors in a codebook.

• For example, consider an audio sample transformed by the encoder 

into a vector of 128 dimensions.

• In the quantization process, the input vector is compared with vectors 

stored in the codebook table.

• The quantizer then selects the index of the vector in the codebook that 
is most similar to the input vector.

• This compression stage effectively reduces the original vector of 128 

numbers to a single number, representing the index in the codebook.
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R E S I D U A L  V E C T O R  

Q U A N T I Z A T I O N  

( R V Q )

It employs a cascade of codebooks to provide a progressively finer 
approximation of the input vectors.

Layered Approach:

• RVQ breaks down the quantization process into multiple layers, 

each addressing the residual error from the preceding layer.

• This layered approach enables scalability, allowing the system to 

operate across different bitrates by adjusting the number of layers.

Efficiency and Precision:

• By breaking down the quantization problem into layers, RVQ 

achieves high precision with reduced computational costs.

• Rather than attempting to quantize a high-dimensional vector with 
a single large codebook, RVQ distributes the task across multiple 

stages, improving efficiency.



M S - S T F T D  

D I S C R I M I N A T O R  
The Multi-Scale Short-Time Fourier Transform Discriminator 
(MS-STFTD) identifies real and generated audio samples by 

analyzing spectral and temporal features.

Components of (MS-STFTD):

• Applies multi-scale STFT to capture spectral features at 
various resolutions.

• Employs convolutional layers for feature extraction.

Convolutional Neural Network (CNN):

• Processes multi-scale STFT representations to extract 

discriminative features.

• Learns hierarchical representations of input spectrograms.



M S - S T F T D  

D I S C R I M I N A T O R  
Input Spectrogram:

• Converts audio samples into spectrograms using STFT.

• Multi-Scale Analysis:

• Utilizes STFT with varying window sizes for multi-scale 

analysis.

• Convolutional Processing:

• Extracts discriminative features using convolutional layers.

Output:

• The MS-STFTD Discriminator provides a probability score 
indicating the likelihood of the input spectrogram belonging 

to the original audio distribution.

• High scores suggest real audio, while low scores indicate 

generated audio.



C O N C L U S I O N

Integration of BERT,  HuBERT, and Facebook's EnCodec offers a comprehensive solution for text-to-speech synthesis.

Semantic Understanding: 

BERT and GPT excel at understanding text semantics, enabling accurate tokenization and semantic modeling. 

Acoustic Representation Learning: 

HuBERT specializes in self-supervised representation learning for speech, facilitating the conversion of semantic tokens 
to coarse acoustic tokens.

Fine Acoustic Detailing: 

Facebook's EnCodec handles the transformation from coarse to fine acoustic tokens, capturing intricate acoustic details 
for high-quality audio synthesis.

By leveraging the strengths of each model, the synthesis pipeline achieves efficiency in natural-sounding synthesized 
speech.



F U T U R E  D I R E C T I O N S

Multimodal Integration

 Explore the integration of visual and textual inputs to 
enable multimodal speech synthesis, catering to 

applications like video captioning and augmented 
reality.

Real-Time Speech Synthesis

Develop optimization strategies to enable real-time 
speech synthesis, facilitating applications like virtual 

assistants and live captioning.

User Interaction and Personalization

 Investigate methods for user interaction and 
personalization, allowing users to clone voices or 

customize the synthesized speech based on 
preferences and context.



D E M O



T H A N K  Y O U !


