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The role of social networks for the modern
population

Public and private data sharing by users
Collection of data from social networks
Protecting the anonymity of a social network
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Introduction - Public Data Sharing

Privacy Settings and Tools

Who can see my stuff? Who can see your future posts? Only Me Edit

wiew all your posts and things you're tagged in Use Activity Log

Limit th you've shared with Limit Past Posts

frien

Who can contact me? Who can send you friend requests? Friends of friends Edit

Who can look me up? Who can o

$ YOu Friends of friends Edit

¢ you up U

Who can look you up using the phone number you Friends of friends Edit
provided?

Do you want search engines outside of Facebook No Edit

to Enk 1o your Profile?
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Related Work

Sequentially clustering to anonymize a
network

The k-member clustering problem

Data and structural k-anonymity in social
networks




Problem Statement
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Problem Statement - The Algorithm in Use
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Algorithm 1: Generating Equal-Sized Clusters

Determine cluster size
Calculate initial clusters with built-in original clustering algorithm
Sort points by the difference of their nearest cluster to the farthest cluster
Assign points to nearest cluster until the cluster size is reached. Continue
with all points
Compute current cluster means
For each point, compute the distances to the cluster means
Sort points based on the difference between the current assignment and
the best possible alternate assignment.
For each point by priority:
a. For each other cluster:

i. If there is an element wanting to leave the other cluster
swap the two elements if it’s an improvement, without
violating cluster max size

b. If the element was not changed, add to outgoing transfer list.
If no more transfers were done (or max iteration threshold was reached),




Experimental Results

Traditional clustering algorithms compared to
our enhanced algorithms
Metrics

Information Loss

Degree of Anonymization

Running Time




Experimental Results

Experiment Details
Dataset: 5000 Yelp users
Enhanced versions of K-Means,
Mean-Shift, and Affinity Propagation
Implemented in Python




Table 1: K-Means, 5000 users

Table 2: Mean-Shift, 5000 users

K (number | Traditional Enhanced K (number | Traditional Enhanced
of clusters) | Information Degree of Running | Information Degree of Running of clusters) | Information | Degree of Running Information | Degree of Running
Lok Anonymization | Time Yo Anonymization | Time Loss Anonymization | Time Loss Anonymization | Time
(seconds) (seconds) (seconds) - (seconds)
5 0.64% 0.0016 5 0.82% 0.001 215 13 (a 0-?) 1-1:/?‘ 0.0002 3 0.55% 0003 366
10 0.43% 0.0004 6 0.62% 0.002 152 2: (a 0.5) “‘8"{“ e o “sz .00 864
o 0.27% 0.0002 G 047% 0.004 e 35 0.86% 0.0002 67 [].73{9 0.007 77
50 017% 0.0002 3 0.33% 0.01 e 49 (q0.2) 0.52% 0.0002 8 0.64% 0.01 772
140 (q 021% 0.0002 104 0.65% 0.03 1656
100 0.12% 0.0002 10 0.3% 0.02 950 0.05)
Table 3: Affinity Propagation, 5000 users
K (number | Traditional Enhanced
of clusters) | Information | Degree of Running Information | Degree of Running
Loss Anonymization | Time Loss Anonymization | Time
(seconds) (seconds)

22 (d 0.99) | 0.75% 0.0002 9 1.0% 0.02 112

57 (d 0.9) 0.25% 0.0002 13 0.85% 0.04 156

65 (d 0.85) | 0.26% 0.0002 13 0.78% 0.05 158

116 (d 0.6) | 0.25% 0.0002 15 0.42% 0.09 245

131 (d 0.5) | 0.26% 0.0002 16 0.38% 0.1 263




Information Loss
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Result Analysis

Information loss kept at a minimum
Increase of the degree of anonymization
Running time comparisons, enhanced
algorithms impractical for large data




Importance of privacy and anonymity in
modern time

Current solution of clustering has a drawback
New proposed solution shows promising
results and a stepping stone for the anonymity
problem
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